Extract1dStep

class jwst.extract_1d.Extract1dStep(name=None, parent=None, config_file=None, _validate_kwds=True, **kws)[source]

Bases: JwstStep

Extract a 1D spectrum from 2D data.

Create a Step instance.

Parameters:
  • name (str, optional) – The name of the Step instance. Used in logging messages and in cache filenames. If not provided, one will be generated based on the class name.

  • parent (Step instance, optional) – The parent step of this step. Used to determine a fully-qualified name for this step, and to determine the mode in which to run this step.

  • config_file (str or pathlib.Path, optional) – The path to the config file that this step was initialized with. Use to determine relative path names of other config files.

  • **kws (dict) – Additional parameters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(input_data)

Execute the step.

Attributes Documentation

class_alias = 'extract_1d'
reference_file_types: ClassVar = ['extract1d', 'apcorr', 'pastasoss', 'specprofile', 'speckernel', 'psf']
spec
subtract_background = boolean(default=None)  # subtract background?
apply_apcorr = boolean(default=True)  # apply aperture corrections?

extraction_type = option("box", "optimal", None, default="box") # Perform box or optimal extraction
use_source_posn = boolean(default=None)  # use source coords to center extractions?
position_offset = float(default=0)  # number of pixels to shift source trace in the cross-dispersion direction
model_nod_pair = boolean(default=True)  # For optimal extraction, model a negative nod if possible
optimize_psf_location = boolean(default=True)  # For optimal extraction, optimize source location
smoothing_length = integer(default=None)  # background smoothing size
bkg_fit = option("poly", "mean", "median", None, default=None)  # background fitting type
bkg_order = integer(default=None, min=0)  # order of background polynomial fit
log_increment = integer(default=50)  # increment for multi-integration log messages
save_profile = boolean(default=False)  # save spatial profile to disk
save_scene_model = boolean(default=False)  # save flux model to disk
save_residual_image = boolean(default=False)  # save residual image to disk

center_xy = float_list(min=2, max=2, default=None)  # IFU extraction x/y center
ifu_autocen = boolean(default=False) # Auto source centering for IFU point source data.
bkg_sigma_clip = float(default=3.0)  # background sigma clipping threshold for IFU
ifu_rfcorr = boolean(default=True) # Apply 1d residual fringe correction (MIRI MRS only)
ifu_set_srctype = option("POINT", "EXTENDED", None, default=None) # user-supplied source type
ifu_rscale = float(default=None, min=0.5, max=3) # Radius in terms of PSF FWHM to scale extraction radii
ifu_covar_scale = float(default=1.0) # Scaling factor to apply to errors to account for IFU cube covariance

soss_atoca = boolean(default=True)  # use ATOCA algorithm
soss_threshold = float(default=1e-2)  # TODO: threshold could be removed from inputs. Its use is too specific now.
soss_n_os = integer(default=2)  # minimum oversampling factor of the underlying wavelength grid used when modeling trace.
soss_wave_grid_in = input_file(default = None)  # Input wavelength grid used to model the detector
soss_wave_grid_out = string(default = None)  # Output wavelength grid solution filename
soss_estimate = input_file(default = None)  # Estimate used to generate the wavelength grid
soss_rtol = float(default=1.0e-4)  # Relative tolerance needed on a pixel model
soss_max_grid_size = integer(default=20000)  # Maximum grid size, if wave_grid not specified
soss_tikfac = float(default=None)  # regularization factor for NIRISS SOSS extraction
soss_width = float(default=40.)  # aperture width used to extract the 1D spectrum from the de-contaminated trace.
soss_bad_pix = option("model", "masking", default="masking")  # method used to handle bad pixels
soss_modelname = output_file(default = None)  # Filename for optional model output of traces and pixel weights

Methods Documentation

process(input_data)[source]

Execute the step.

Parameters:

input_data (DataModel) – The input model.

Returns:

This will be input_model if the step was skipped; otherwise, it will be a model containing 1-D extracted spectra.

Return type:

DataModel